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The general transformation theory of Lagrangian mechanics is revisited from a 
group-theoretic point of view. After considering the transformation of the 
Lagrangian function under local coordinate transformations in configuration 
spacetime, the general covariance of the formalism of Lagrange is discussed. 
Next, the group of Lagrange (for all n-dimensional Lagrangian systems) is 
introduced, and some important features of this group, as well as of its action 
on the set of Lagrangians, are briefly examined. Only finite local transformations 
of coordinates are considered here, and no variational transformation of the 
action is required in this study. Some miscellaneous examples of the formalism 
are included. 

1. I N T R O D U C T I O N  

It is well  k n o w n  that ,  f rom a p rac t i ca l  p o i n t  o f  view, the  severa l  
f o rmu la t i ons  o f  mechan ic s  usua l ly  do  not  ma te r i a l l y  decrease  the diff iculty 
o f  solving any  given p r o b l e m .  F o r  ins tance ,  in the H a m i l t o n i a n  fo rmu la t i on  
one  winds  up  p rac t i ca l ly  with the  same dif ferent ia l  equa t ions  to be so lved  
as are  p r o v i d e d  by  the Lag rang i an  p rocedure .  So, it seems tha t  the  advan-  
tages  o f  the  Lag rang i an  or  the H a m i l t o n i a n  fo rmula t ions  lie no t  so much  
in thei r  use  as ca l cu la t iona l  tools ,  but  r a the r  in the  d e e p e r  ins ight  they  
afford into the  formal  s t ruc ture  o f  mechanics .  

Never the less ,  a given sys tem can be desc r ibed  by  more  than  one  set 
o f  var iab les ,  and  for  each  p r o b l e m  there  m a y  be one  pa r t i cu l a r  choice  for  
which  the var iab les  may  be  more  su i tab le  s ince the  so lu t ion  is s impler .  This 
fact  sets the  t ask  o f  the  transformation theory of  mechanics, which  s tudies  
the  genera l  cond i t i ons  for  the  equal  s tatus a c c o r d e d  to different  systems o f  
var iables .  Thus ,  in H a m i l t o n i a n  mechan ics ,  this  is the  task  o f  the  theo ry  o f  
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canonical transformations (see, for instance, Desloge, 1982, Vol. 2, pp. 755- 
764). Furthermore, transformation theory is an important subject, for it 
yields the basic tools for studying symmetries in mechanics. 3 

We will be interested here in dealing with the theory of transformations 
of Lagrangian mechanics. The focus of this theory is the existence of several 
classes of equivalent Lagrangians (i.e., "g-equivalent," "c-equivalent," or 
"s-equivalent" Lagrangians), which can be introduced in a very broad sense. 
Each class of Lagrangians plays a peculiar role within the general formalism. 
To handle them in a systematic fashion, one introduces first the concept of 
the Lagrange group, which is committed with the notion of "g-equivalence," 
as we shall see presently. This group is analogous to (and as important as) 
the group of canonical transformations of Hamiltonian mechanics. Essen- 
tially, the action of the elements of both groups is the same, notwithstanding 
the fact that they are not isomorphic; namely, they transform one mechanical 
system into another. The Lagrange group acts on the manifold of 
Lagrangians, the canonical group acts on the manifold of Hamiltonians, 
and both groups keep invariant the general mathematical features of the 
corresponding mechanical formalism. 4 

Most textbooks of analytical mechanics seldom consider the importance 
of the theory of transformations at the level of the Lagrangian formal- 
ism, as they always do for Hamiltonian mechanics and the Hamil ton-  
Jacobi theory (Goldstein, 1980, Chapter 9, pp. 378-437, and Chapter 10, 
pp. 438-498), when considering canonical transformations. Apparently, the 
Lagrange group is the side of the transformation theory of mechanics that 
is least known to most physicists. 

Lagrangian mechanics is one of the most important formalisms of 
physics, and the better we know it, the better shall be our understanding 
of  many physical theories which are (or can be) embedded in the Lagrangian 
framework (Rosen, 1969). Hence, formal as it is, the general transformation 
theory of  Lagrangian mechanics is an interesting subject by itself, which is 
as important as the theory of canonical transformations. 

The organization of  this paper is as follows. In Section 2 we recall 
some useful notions, and we review the gauge freedom of the Lagrangian 
formulation. In Section 3, the ditteomorphisms of point transformations 
are extended from the configuration space to the configration spacetime of 
the system, and the concept of a Lagrangian transformation is introduced. 

3See Noether (1918). For an English translation of this fundamental paper, see Noether (1971). 
4A unified treatment of symmetries in analytical mechanics has been recently proposed by 
Leubner and Marte (1985), in which an interesting generalized Noether theorem arises. Also 
a new unification approach is presented by Schafir (1988). These works point to the intimate 
relationship between both transformation groups, which, however, requires further study. In 
this sense, see also Kobe (1988). 
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Section 4 contains the discussion of the general covariance of the formalism 
under Lagrangian transformations. Section 5 is devoted to a brief discussion 
of the Lagrange group. We present three miscellaneous examples in Section 
6, and finally, Section 7 contains some concluding remarks. 

2. GAUGE TRANSFORMATIONS OF THE LAGRANGIAN 

Let us first recall some useful notions. The equations of motion of an 
n-dimensional Lagrangian system are obtained from the Euler-Lagrange 
equations 

6L=_ OL d ( o~)  =O (2.1) 
8q J Oq ~ dt 

of a given Lagrangian function L(t, q, (t) = L(t; q l , . . . ,  q~; q l , . . . ,  q,).  (It 
goes without saying that all Lagrangians considered in this paper correspond 
to systems with the same number of degrees of freedom.) Once a Lagrangian 
function has been found for the description of a system, 5 one obtains the 
Euler-Lagrange equations by applying Hamilton's variational principle to 
the action functional S defined by L. 

An important class of Lagrangians (called "null Lagrangians") are 
those which have the property that every curve renders their action integrals 
stationary for all variations that vanish on the extremes. Their characteriz- 
ation is well known (Hill, 1951). Hence, the following concept is in order: 
Two Lagrangian functions/~(t, q, q) and L(t, q, el) are said to be g-equivalent 
(i.e., gauge-equivalent) when there exist a function G(t, q) and a constant 
K such that 

/~,(t, q, q) = KL(t, q, (t)+ &(t, q) (2.2) 

In such a case, performing variational derivatives on both members of 
equation (2.2), one gets 

KsL 6L=o r - -=-  0 (2.3) 
3q j 6q j 6q j 

(since 3G/3qJ-O), which means that every solution of the old Euler- 
Lagrange equations is also a solution of the new Euler-Lagrange equations, 

5This gives rise to the inverse problem of the calculus of variations, which consists in trying to 
find a// Lagrangians which yield Euler-Lagrange equations that are equivalent to a given 
system of  equations of  motion. This problem was first solved for n = 1 by Darboux (1891, 
Vol. 3). The case n = 2 was treated much later by Douglas (1941). A large amount of  noteworthy 
work devoted to this fundamental problem has been published lately; see, for instance, Sarlet 
(1982). For a recent approach, see Carifiena and Martinez (1989) and references therein. 
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and vice versa, so that g-equivalent Lagrangians provide the same equations 
of motion. This simply says that a Lagrangian function for a given system 
is only determined to within a class of g-equivalent Lagrangians defined 
by arbitrary gauge transformations of the form (2.2). (The interest of keeping 
the gauge scaling constant K ~ 1 will be apparent in the examples considered 
in this paper.) 

Note that no transformation of variables participates in a gauge trans- 
formation of  the Lagrangian. The new Lagrangian /~ is just a function of 
the old Lagrangian L, such that both Lagrangians provide the same dynami- 
cal description of the system through the equations of motion. If one defines 
a new Lagrangian function/~(t, q, q) = f ( L ) +  G(t, q), it can be shown that 
f ( L )  = KL(t, q, r (where K is a constant) yields the most general gauge 
transformation of L that is consistent with the implication stated in 
equation (2.3). 

There is another kind of Lagrangian transformation (called "fouling" 
transformations) which satisfies also an implication analogous to equation 
(2.3). However, "fouling" transformations of L yield /_~ as a functional of 
L, while gauge transformations yield/~ as a function of L (Curie and Saletan, 
1966). All other transformations allowed in Lagrangian mechanics that are 
consistent with an implication like equation (2,3) are committed with 
transformations of variables. We shall discuss them in the sequel. 

Although somehow trivial, gauge freedom is one of the most important 
features of Lagrangian mechanics. Indeed, the representative Lagrangian 
function that describes a given Lagrangian system is quite generally not 
unique, and g-equivalence entails the simplest instance of this fact. 6 

3. COORDINATE TRANSFORMATIONS IN 
CONFIGURATION SPACETIME 

The configuration space {q} of a Lagrangian system has the structure 
of a differentiable manifold, on which the group of n-dimensional (time- 
dependent) diffeomorphisms locally acts (Arnold, 1978). One easily proves 
the general covariance of the formalism of Lagrange under the action of 
this group. 

The basic ideas and theorems of Lagrangian mechanics (even if formu- 
lated in terms of  local coordinates) are invariant under a larger group of 
transformations which also affect time; furthermore, these transformations 
usually "mix"  time with the generalized coordinates. For this reason, it is 
better if one considers the configuration spacetime {(t, q)} as the fundamental 

6There is another concept of "dynamically equivalent" Lagrangians (that is not considered 
here); this is the notion of s-equivalent Lagrangians, which was introduced by Hojman and 
Harleston (1981). 
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differentiable manifold of Lagrangian theory. The configuration spacetime 
of Lagrangian mechanics is not necessarily a metric space; it is just the 
space {t} x{q} of independent and dependent variables (Tr/imper, 1983, 
and references therein). Our aim is to discuss this subject, although rather 
briefly. 

Let us consider a sufficiently smooth transformation of the variables 
(t; q l . . . ,  qn) into a new set of variables (T; Q~ . . . .  , Qn): 

T= T(t, q) (3.1) 

OJ = QJ(t, q) 

By "sufficiently smooth" one means that the functions T and QJ are of 
continuity class C"  (/z > 2) in some specified open connected region R c 
{(t, q)}, and globally invertible on R. (Usually one has C ~, but this is not 
strictly necessary.) We shall write 

t =  t(T, Q) (3.2) 

q~ = qJ( T, O) 

to denote the inverse transformation corresponding to (3.1). These are point 
transformations (i.e., diffeomorphisms) in configuration spacetime, and all 
admissible point transformations are assumed to meet these conditions. 
Henceforth, all our considerations have a local character, for we shall always 
assume that (t, q) E R. 

We here face a transformation [i.e., equation (3.1)] which we interpret 
either from a "passive" or from an "active" viewpoint. Although it usually 
matters little which intuitive point we adopt, at this stage we get a better 
development of these topics by presenting them under the scope of the 
"passive" point of view (which is also more akin with the theory of relativity). 
Thus, equation (3.1) will he thought of as a local transformation of  coordin- 
ates in configuration spacetime (i.e., in this paper we interpret R as a 
coordinate patch). We next consider the action integral under this point of 
view. 

In order to calculate a value for the functional S, one has to specify a 
curve qJ= cJ(t); one then evaluates the action integral along the chosen 
curve, with qJ = dcJ(t)/dr. In this fashion, given a transformation of coordin- 
ates, one writes qd=qJ(T, Q)=cJ[t(T, Q)], from which the expression 
QJ = C J(T) for the curve follows in terms of the new coordinates (provided 
the conditions required by the implicit function theorem are satisfied). 
Hence we write, quite generally, 

S = dt L(t, q, C 1) = dTf_,(T, Q, (~)= S (3.3) 
t l  T 1 
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where we define the new Lagrangian by 

T/2( T, Q, Q) = L(t, q, (1) (3.4) 

the new generalized velocities Q~ corresponding to 

d~ j (3.5) 
dT T 

On the right-hand side of equation (3.3) we integrate along Q J= CJ(T) 
between the limits T1 = r [ q ,  c(q)] and T2 = T[t2, c(t2)], since T is the new 
variable of integration. Note that equation (3.3) is valid for every chosen 
curve q J= eJ(t) whatsoever. In few words, equation (3.3) entails a simple 
change of variables in an integral, and therefore no question of symmetry 
for S is here involved. 

Moreover, according to equation (3.4), one proves that gauge transfor- 
mations of the Lagrangian are invariant under general coordinate transfor- 
mations in configuration spacetime. This means that every local change of 
coordinates transforms whole g-classes of Lagrangians into new g-classes 
of Lagrangians. In this fashion, one justifies the following definition: Every 
local transformation of coordinates in configuration spacetime induces a 
new g-class of Lagrangian functions I2, which can be defined by 

7"s Q, t~)= KL( t, q, gl)+ G( t, q) (3.6) 

where L is the old Lagrangian, G an arbitrary gauge function, K an arbitrary 
constant, and T is the new independent variable. This definition makes 
sense, because equation (3.6) differs from equation (3.4) by an arbitrary 
gauge transformation] In the sequel we shall refer to equation (3.6) as a 
Lagrangian transformation induced by a local coordinate transformation in 
configuration spacetime. 

A point worthy of mention is that one does not go too far within the 
Lagrangian theory of transformations if one adopts the "active" interpreta- 
tion of diffeomorphisms, since there is no justifiable way for defining a new 
Lagrangian by means of an "active" mapping of events in configuration 
spacetime applied to the action integral. In fact, the "active" approach 
changes the curve along which S is defined; it does not change the form of 
the Lagrangian function. Thus, "active" mappings do not provide a criterion 
for defining a new Lagrangian, as coordinate transformations automatically 
do. [Of course, this remark does not preclude the use of the powerful 
variational (i.e., "active") approach to infinitesimal diffeomorphisms in 
mechanics, which is well suited for other important purposes.] 

7Certainly, instead of equation (4.3), one now has S = KS+ G 2- G~, which corresponds to a 
gauge transformation of the action functional; see Levy-Leblond (1979). 
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4. G E N E R A L  C O V A R I A N C E  O F  T H E  
L A G R A N G I A N  F O R M A L I S M  

We are ready to discuss the relationship between the new and the old 
Euler-Lagrange equations. First, we shall find the general law of covariance 
of the variational derivatives 8L/6~ and 6I./6Q j. Using equation (3.1), we 
now get 

a~r d~ 
a q ---7 = d----[ = ~ 
aT aT (4.1) 
a d/ - a q j Tj 

and from equation (3.5) we have 

 0k-- Q;- k) 
aq j 
al~k (4.2) 
a• - j ' - ' (  Q~ - Tj(~k) 

where O~ = dQ~/dt=aOk/aq j. Thus, by means of equation (4.6) (taking 
G = 0, which is enough for this purpose), we obtain 

= + + (O~ - L(~ k) (4.3) K OLOq J ~s T Tj~-~ .,~j - ~ ]  0-~ 

KOL___ A k O/~, = TjL+(Qj - Tj(~ k) (4.4) 

and hence 

d OL = ~s T(Q~- TjQ ) ~ \oQk ] o 760+ 
as 

+ ( O ~ -  ~ ) k )  0 ~  k (4.5) 

follows. Therefore, equations (4.3) and (4.5) yield the desired covariance 
law. s 

Thus, one proves the following theorem: The covariance law for the 
variational derivatives of two Lagrangian functions, which are related by a 
Lagrangian transformation in configuration spacetime, reads 

�9 oO .~ o 6 s  6L K- '  r - ~ q j - Q  ~ 6--(~ (4.6) 
6q' 

8A very thoughtful discussion of this subject (in the realm of classical field theory) can be 
found in Olver (1986, Chapter 4, pp. 246-286). 
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Note that this law can be inverted, so that both variational derivatives 
8L/6q i and 6s  stand on the same footing. This shows that the vari- 
ational derivatives of the Lagrangian behave as a geometric object (of a very 
peculiar kind) under general coordinate transformations in configuration 
spacetime (see, for instance, Yano, 1955, p. 18). 

Our next task is to ascertain the invariance of the Hamilton principle 
under general (n + 1)-dimensional diffeomorphisms. Thus, we need to prove 
that if one directly applies the variational principle to the action S, then 
the induced variation on S [cf. equation (3.3)] corresponds to an application 
of  the same principle directly on S, and conversely. This is a consequence 
of the general variational formula for 3S [due to generalized variations of 
the form t -~ t + 3t(t, q) and q~ -* qJ + 3qJ (t, q)], namely 

,, dt-~qj(3q - d l J 6 t ) + [ - ~ 3  q - ~ - ~ q  - L )  6t tl (4.7) 

from which the Hamilton principle follows as a special application (Mercier, 
1963, pp. 12-14). We leave the details of the proof  to the reader. 

This finishes the "consistency control" of the formalism of Lagrangian 
transformations. Hence, one has that Lagrangian mechanics is a general 
covariant theory under all diffeomorphisms which act as local coordinate 
transformations in configuration spacetime. 

The fact that the new coordinates {(T, Q)} are "moving" relative to 
the old coordinates {(t, q)} is tantamount to a substantial change in the 
dynamical description of the system. Indeed, from (4.6) it follows that 

3qJ 6Q j = 30 j dT \ - ~ ]  (4.8) 

where the new equations of motion in general differ from the old equations 
of motion. 9 This means that whenever a trajectory qJ = cJ(t) is a solution 
to the old Euler-Lagrange equations, the transformed trajectory QJ = CJ(T) 
will automatically satisfy the new equations of motion. Hence, the same 
change of coordinates that transforms one Lagrangian into another also 
transforms all the configuration worldlines of  the system. 

The local nature of diffeomorphisms must be stressed at this point. For 
instance, the harmonic oscillator and the free particle are very different 
dynamical systems, and there is no way that they can be mapped globally 
into each other by means of  a Lagrangian transformation; however, pieces 
of  them can be mapped into each other in local connected regions of 

9The equality A• B means A = B holds on the physical wordlines of the system, while it is 
not necessarily valid everywhere. (Of course, A & B has the same meaning, mutatis mutandi.) 
Cf. Candotti et al. (1972). 
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spacetime, by means of local coordinate transformations that do not include 
any singular points. At first sight this seems to be almost intuitively 
"evident." Nevertheless, this is not the case for any two conceivable n- 
dimensional Lagrangian systems, which are characterized by two given 
Lagrangian functions L and L'. Contrary to the naive intuitive "guess," the 
fact that there exists a local Lagrangian transformation that changes 
L(t, q, q) into s Q, t~), far from being the rule, corresponds to the 
exception. In fact, it is not true that all Lagrangian functions are equivalent 
within a Lagrangian transformation, otherwise these transformations would 
be trivial. When there exists a Lagrangian transformation that maps one 
Lagrangian function into another one says that they are c-equivalent (i.e., 
curve-equivalent) Lagrangians. This feature makes Lagrangian transforma- 
tions an important tool of  analytical mechanics. We shall consider this 
subject in a forthcoming article. To this end, however, we need to know 
first some rather simple group properties of  Lagrangian transformations. 

5, THE LAGRANGE G R O U P  FOR n - D I M E N S I O N A L  SYSTEMS 

It is very useful to introduce a short-hand notation in order to discuss 
the group properties of  diffeomorphisms and gauge transformations in 
Lagrangian mechanics. Henceforth we shall write D to denote a general 
diffeomorphism in configuration spacetime, as defined in equation (3.1), 
and D -1 to denote its inverse (3.2). Of course, the symbolic expression 
D21 = D z D  1 denotes the composite diffeomorphism 

T= T2[ TI(t, q), Ql(t, q)] 

QJ = Q{[ r,( t, q), Ql( t, q)] (5.1) 

In particular, we write I for the identity transformation: T -  t and Q' = qJ. 
If  one performs two successive Lagrangian transformations (3.6), one 

gets a Lagrangian transformation given by 

J's T, Q, O)= K2,L(t, q, {l)+ G2,(t , q) (5.2) 

where T and Q are given in (5.1), K2t = KzK1 and G21 is defined by 

G21(t, q) = K2G,(t, q)+ G2[T,(t, q), Q,(t, q)] (5.3) 

For the inversion of a Lagrangian transformation, one has 

[L(t, q, gl)= K-1s T, Q, Q ) - K - I G (  t, q) 

So, it is helpful to define G as a scalar function: 

G(T, Q) = O[t(T, Q), q(T, Q)] = O(t, q) (5.4) 

Accordingly, let us write the symbolic equation 

s = (D, K, G)L (5.5) 
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to briefly denote a general Lagrangian transformation of L under D, accord- 
ing to the law stated in equation (3.6). In this manner, we can write 

1~ = (I, K, G)L (5.6) 

as a symbol for the gauge transformation (2.3) of L generated by K and 
G. Thus, we get a very handy notation. For instance, one has the following 
composition law for these symbols: 

(D21, K21, G21) = (D2, K2, G2)(D1, K1, G1) = (D2D1, KzK1, K2G1 + G2) 
(5.7) 

and the inversion law reads (D,K,  G)- I=(D-1 ,  K -1, - K - 1 G ) ,  which 
meanings are sufficiently clear. Of course, one has L = (I, 1, 0)L, so that 
(/, 1, 0) symbolizes the identity in the present notation. [As an application 
of this symbolism, it can be shown that Lagrangian transformations 
(D, K, G) and gauge transformations (/, K, G) obey the following commu- 
tation rule: 

(D, K2, G2)(I, K1, 61)=  (I, K1, K2G1- K, G2+ G2)(D, K2,, G2) (5.8) 

By the way, this shows that each Lagrangian transformation (D, K, G) maps 
whole g-classes into new g-classes of Lagrangians.] 

Since diffeomorphisms are always associative, i.e., D3(D2D1) = 
(D3D2)D1, the associative property of the product law (5.7) follows in a 
straightforward manner. Hence, the set of all Lagrangian transformations 
constitutes a group under this particular law of combination. We call this 
group the Lagrange group for n-dimensional Lagrangian systems, and we 
shall denote it by L(~) = {(D, K, G)}. This is the most general group of  point 
transformations acting on the set {L} (of all representative Lagrangians for 
n-dimensional systems) that keeps invariant the Lagrangian formalism of 
mechanics. 

For all the elements of L(,) one has 
A 

(D, 1, 0)(I, K, G) = (I, K, G)(D, 1, O) = (D, K, G) (5.9) 

Furthermore, the Lagrange group L(n~ is the direct product of the group 
D(,+I) ={D} of all (n + 1)-dimensional local diffeomorphisms, and of the 
group Gc, ) = {(/, K, G)} of all gauge transformations. Thus, we write 

L(n) = D(n+l)Q G(n) (5.10) 

The group D(n+l) is isomorphic with the subgroup {(D, 1, 0)} of L(,). Let 
us also observe that G(~) is a non-Abelian group (i.e., when K # 1), while 
{(I, 1, G)} is an Abelian subgroup of GI, ). 
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6. SOME MISCELLANEOUS EXAMPLES 

In this section we present three interesting instances of the previous 
formalism. For the sake of briefness, we describe this matter in a rather 
sketchy manner. 

6.1.  G a u g e  T r a n s f o r m a t i o n s  and the  Lorentz  Force 

The complete force on a point charge e moving in an electromagnetic 
field is 

F = e ( E + ~ x B )  (6.1) 

where E and B are obtained from the potentials ~b and A, i.e., 

0A 
E = - V ~ b  - -  

at 

B = V x A (6.2)  

As is well known, if one introduces the generalized potential 

U ( t , x , x ) = e ( ~ b ( t , x ) - e x c  .A( t , x ) )  (6.3) 

and the (nonrelativistic) Lagrangian function 

L( t, x, x) :�89 2 -  U( t, x, ~) (6.4) 

where m is the mass of the charged particle, then the Euler-Lagrange 
equations yield 

6L 6U 
- - m ~  . . . .  m ~ +  e ( E  + x x B)  = 0 (6.5)  

6x 6x 

The electromagnetic potentials (d~, A) associated with a given electro- 
magnetic field (E, B) [cf. equations (6.2)] are defined to within a gauge 
transformation, namely 

Ot 
(6.6) 

A - > A = A - V 0  

where ~(t, x) is an arbitrary scalar gauge field. Furthermore, equation (6.5) 
tells us that the acceleration J~ of a test particle in a given field depends 
only on its specific charge e/m. Hence, the allowed worldlines are invariant 
under the following change of scale: 

m-~ rfi= Km 
e--> ~ = Ke (6.7) 
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Now, the transformations (6.6) and (6.7) induce the following gauge 
transformation of the Lagrangian defined in equation (6.4): 

/~(/, X, X) = KL(t, x, ~ ) + d  [e~(t, x)] (6.8) 

Indeed, it is well known that these standard gauge transformations of 
electrodynamics yield one of the most important instances of equation (2.2). 

6.2. The Free Particle and the Simple Harmonic Oscillator 

It is well known that the local coordinate transformation (Arnold, 
1988, p. 44) 

T = tan tot, Q = q sec tot (6.9) 

reduces the equation of motion ~ + w2q = 0 into the free particle equation 
= 0. In fact, if we consider the Lagrangian function/~(~) = �89 under this 

diffeomorphism, after some manipulations we obtain 

1 2 2  d 
1~r(~2 =~to ((12_ to q ) + 7  (lq2 tan tot) (6.10) 

This is a Lagrangian transformation of the Lagrangian function L(q, (1) = 
�89 - w2q2), in the sense of equation (3.6), where we recognize K = to-1 and 

G( t, q) = �89 tan tot (6.11) 

Hence, we see that the interest of the generalization (3.6) of equation (3.4) 
is not merely academic; as a matter of fact, it applies in many important 
examples of Lagrangian mechanics. 

6.3. The One-Dimensional Kepler System 

We finally present a counterexample, which shows that not all 
Lagrangian systems are c-equivalent, and therefore the formalism of 
Lagrangian transformations is not a trivial subject. 

Let us consider the one-dimensional system defined by the Lagrangian 
L(q, (1) =l(t2+(k/q), where k is a positive constant and q >  0. Assume that 
there exists a Lagrangian transformation (D, K, G) such that 

�89 K ( l  (12 q-k) q'- 0 (6.12) 

so that this system would be c-equivalent to a free particle system. More 
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explicitly, this equation reads 

KTqgI3 + ( KT, + 2 TqGq-Qaq)O2+ ( 2Kk Tq + 2 TtGq + 2 TqGt-2Q, Qq) dl 

+ ( 2 K  k T,+2T, G, -Q2, )=0 (6.13) 

where we have written 7", =OT/Ot, Tq =OT/Oq, and so on. Since equation 
(6.13) must hold identically for all values of q, and K # 0, we get Tq = 0 
[i.e., T =  T(t)], and therefore equation (6.13) requires 

K T -  2 Qq = 0 (6.14a) 

J'Gq - QtQq = 0 ( 6 . 1 4 b )  

2 ( K k +  G , ) J ' -  Q~= 0 (6.14c) 

From equation (6.14a) we obtain 

Q( t, q) = O( t)q + d~( t) (6.15) 

where O(t)=(KJ~) ~/2 and &(t) remains arbitrary. Then, substitution of 
(6.15) into (6.14b) gives us 

G( t, q)=-~-~ q2 + - ~  q + tx( t ) (6.16) 

with ~(t)  a new arbitrary function. 
However, substitution of the previous results into equation (6.14c), 

after some manipulations, yields 

q • q2+(12-~ '~)q+2Kk=O (6.17) 

which must hold for all q > 0. This means K---0, which is absurd. Thus, 
we see that the Kepler system, in a state of zero angular momentum, is not 
c-equivalent to a one-dimensional free particle. 

7. C O N C L U D I N G  REMARKS 

As we have seen in this paper, by means of a local coordinate transfor- 
mation in configuration spacetime one can get a new Lagrangian s which 
describes a system with a different dynamical nature than that described 
by the old Lagrangian L. (Thus, for instance, one can locally transform a 
harmonic oscillator into a free particle.) This is so, as a general rule, only 
if both systems belong to the same class of c-equivalent Lagrangians. 
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The participation of  the time variable in Lagrangian transformations 
plays a very meaningful role. 1~ It is clear that if one keeps T = t, and one 
transforms only the generalized coordinates into QJ = QJ(q), then the new 
Lagrangian L will still describe the same physical system that is described 
by L, although in terms of a new fixed frame of  coordinates. (The change 
from Cartesian to spherical coordinates is a simple instance of this general 
feature.) On the other hand, as was already remarked in Section 4, the fact 
that the new coordinate frame {( T, Q)} is "moving" relative to the old frame 
{(t, q)} can produce severe changes in the dynamical description of  the 
system. In this sense, the Lagrange group of  Lagrangian mechanics plays 
the same general role as the canonical group of  Hamiltonian mechanics. 

Finally, as a general conclusion, we would like to remark that in this 
paper Lagrangian mechanics has been examined under the broad scope of 
the principle of general covariance. 11 A general relativistic theory of mechanics 
thus arises, which is one of  the many reasons that make the Lagrange 
formalism so important in physics. 
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